Vivekananda College of Engineering & Technology,Puttur [A Unit of Vivekananda Vidyavardhaka Sangha Puttur ®]								
Affiliated to VTU, Belagavi & Approved by AICTE New Delhi								
CRM08 Rev 1.10 CSE 20/06/2021								

CONTINUOUS INTERNAL EVALUATION- 2

Dept:CSE	Sem / Div:4th A&B	Sub: Operating Systems	S Code:18CS43					
Date:25/06/2021	Time: 9:30-11:00 am	Max Marks: 50	Elective:N					
Note: Answer any 2 full questions, choosing one full question from each part.								

	Q N		Questions								Marks	RBT	COs	
F						PA	RT A							
1	a Using Banker's algorithm determine whether the following system is in a safe state.								10	L3	CO3			
		Proce	A	llocatio	n		Max		A	vailab	le			
		ss id	ss id A B C A B C A B C						C					
		P ₀	0	0	2	0	0	4	1	0	2			
		P ₁	1	0	0	2	0	1						
		P ₂	6	3	2	8	4	2						
		P ₃	1	3	5	1	3	7						
		P ₄	1	4	3	1	5	7						
		i) Find	1 NEEI) Matri	x.									
		ii) Find	l safe s	equenc	e for th	e abov	e snaps	hot.						
		iii) If a	reques	t for P ₃ ((0, 0, 1)) arrive	s, can i	t be gra	inted in	nmedia	tely?			
╞	h	i) What	ore th	0 10000	SOTU CO	ndition	s to be	hold a	and for	a daad	llock to	8	13	CO3
		occur?	Explain	n.	sary cu	mannon		noiu g	000 101	a ucau		0		005
		ii) Def	ine Re	esource	Alloc	ation (Graph.	Draw	Resour	ce All	ocation			
		Graph	for the	e follov	wing s	cenario	and o	check	for the	existe	ence of			
		deadloc	k. If th	nere exi	sts dea	dlock, v	write th	e sequ	ence of	proces	ses and			
		resourc	e types	involv	ed in d	eadlock	ζ.							
		$\mathbf{P} = \{\mathbf{P}_1, \mathbf{P}_2, \mathbf{P}_3\}$	$P_2, P_3,$	P_4 , R	$R = \{R_1, I\}$	R_2, R_3	and P	rocess	states a	are def	ined as			
		tollows	: Idina	on inst	n noo o'	f Docol	iroo tu		and is a	voiting	for an			
		instance	e of res	an msu source f	vne R ₁	I Kesoi	ince typ	$\mathcal{D} \subset \mathbf{K}_2$	and is v	wannig	101 all			
		Process	P_2 ho	olding a	n insta	nce of	Resourd	ce type	R_1 and	is wai	ting for			
		an insta	ince of	resourc	e type	R ₂ and	R ₃ .	71						
		Process	P_3 is	holding	g an in	stance	of Reso	ource t	ype R ₃	and is	waiting			
		for an i	nstance	e of reso	ource ty	ype R ₂	_							
		Process	\mathbf{P}_4 is	holding	an ins	tance of	f Resou	rce typ	$\frac{1}{2}$ e R ₃	1				
	c	Illustra nrohlor	te with	example	ple, th	e Peter	rson's s	solution	1 for c	ritical	section	1	L2	CO2
		probler	n and p	nove in	at the I	nutual	exclusio	n prop	erty is	preserv	reu.			
F														
								OR						
2	a	Using 1	Banker	's algor	ithm d	etermir	ne whet	her the	e follow	ving sv	stem is	10	L3	CO3
		in a saf	e state.	U						0 1				

Vivekananda College of Engineering & Technology,Puttur [A Unit of Vivekananda Vidyavardhaka Sangha Puttur ®]								
Affi	liated to VTU, Belagavi &	Approved by AICTE New	Delhi					
CRM08 Rev 1.10 CSE 20/06/2021								

CONTINUOUS INTERNAL EVALUATION- 2

	Proce	Al	locatio	n	Max		Available						
	ss id	Α	В	С	А	В	С	A	В	C			
	P ₀	0	1	0	7	4	3	2	3	0			
	P ₁	3	0	2	0	2	0						
	P ₂	3	0	2	6	0	0						
	P ₃	2	1	1	2	2	2						
	P ₄	0	0	2	4	3	3	1					
	 i) Find NEED Matrix. ii) Find safe sequence for the above snapshot. iii) If a request for P₀ (0, 2, 0) arrives, can it be granted immediately? 												
	bi) Existence of cycle in Resource Allocation Graph indicates a deadlock. Yes or No? Justify your answer with example. ii) Define wait -for graph with example. Convert the following Resource Allocation Graph to wait-for graph. $\begin{array}{c} P_1 \\ \hline P_1 \\ \hline R_4 \\ \hline R_4 \\ \hline R_4 \\ \hline R_4 \\ \hline R_5 \\ \hline P_4 \\ \hline \end{array}$											CO3	
	e What i Philoso	is a M opher's I	onitor? Problen	' Expla n, using	ain the g Moni	soluti tor.	on to	the cla	ssical	Dining	7	L2	CO2
	1				PA	RT B						1	1
3	What a with a s	re Tran simple i	slation	load a system	side bu with a	ıffer (T neat di	LB)? E agram.	Explain	TLB i	n detail	10	L2	CO3
1	b Following is a system using simple segmentation. Logical address is given in the following segment table.								8	L3	CO3		
	Se	gment		В	ase		Leng	th(limit	t)				
		0		3	30			124	·				
		1		8	76		,	211					
		2		1	11			99					
		3		4	98			302					
	Compute the physical addresses for each of the logical address given												

Vivekananda College of Engineering & Technology,Puttur										
[A Unit of Vivekananda Vidyavardhaka Sangha Puttur ®]										
Affiliated to VTU, Belagavi & Approved by AICTE New Delhi										
CRM08	CRM08 Rev 1.10 CSE 20/06/2021									

CONTINUOUS INTERNAL EVALUATION- 2

		in the table. Segmen the address genera fault".					
		Segment Number	Offset				
		1	247				
		3	300				
		2	85				
		0	114				
	c	Write a note on Rac	are the requirements for Critical	7	L2	CO2	
		Section Problem? E					
			OR				
4	a	What are the princindicating how the l	10	L2	CO3		
	b	Given memory par 600 KB (in order), l algorithms place pro	8	L3	CO3		
	c	Explain semaphores	s with its types and	implementation.	7	L2	CO2

Cenf states

Prepared by: Roopa G K /Bharathi K